If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=1000
We move all terms to the left:
k^2-(1000)=0
a = 1; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·1·(-1000)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*1}=\frac{0-20\sqrt{10}}{2} =-\frac{20\sqrt{10}}{2} =-10\sqrt{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*1}=\frac{0+20\sqrt{10}}{2} =\frac{20\sqrt{10}}{2} =10\sqrt{10} $
| -10x-18=20x+12 | | c+28c=-58 | | 1/8(5y+64)=1/4(20) | | m÷8+4=16 | | -40s-19s+45s=70 | | 6(2x+6)=4(3x+9) | | 2x+18=2-10× | | 5t^2-49t-320=0 | | 6x+3-x+2=7x-1 | | |5b+4|-2=9 | | d-1/3-(d-2/4=1 | | 18-27x-29=8x-23 | | -7=8+3u | | (d-1/3)-(d-2/4)=1 | | X-23+2-5=x | | 18-34x-47=-23 | | g(2)=4(2)^2-3(2)+5 | | 1/6(a-5)=2/3(a+2)-1/3a | | 2x+×=36 | | 4(p-15)-8=4 | | 2x2+13x+20=0 | | 60=6(+2n) | | 9-6(2x-5)=-3 | | -1⁄4a−4=4a= | | 6x2=−19x−15 | | y=-2(-1)^2+-3+4 | | 3x-x+23=60 | | 4x=x-35 | | 2y+34=12 | | 4(j+1)-6=10 | | 16x+28x=180 | | 3/10x−30=60 |